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Abstract

We propose equations governing the dissolution in inhomogeneous temperature field in terms of the vari-

ational principle. The derived equations clarify that the interface energy between solute and solvent has a

significant effect on the process of the dissolution. The interface energy restrains the dissolution, and the

moving interface involves the heat of dissolution.

Introduction

Dissolution is an important process and frequently
discussed in industry as well as in science. For exam-
ple, the dissolution of supercritical CO

2

in interstitial
water is one of the most crucial research topics in CO

2

capture and storage (CCS), which stores the CO
2

into
the deep underground in a geological rock formation.
The CO

2

can be trapped in the micro-pore space as
droplets surrounded by water. At this small scale, the
contribution of the interface energy to the total en-
ergy is consequential, and thus comes into play. Vari-
ous phase field models based on free energies are often
used to study the dynamics on the assumption of con-
stant temperature and no heat transfer[1, 2]. There
can be phenomena involved in the inhomogeneous
temperature and the heat transfer. The diffusion flux
can be induced by a temperature gradient, which is
known as the Soret effect or thermal diffusion[3]. The
heat transfer during dissolution across the interface is
also considered important for the dynamics of the gas
CO

2

at near the critical point because of its very large
thermal conductivity[4]. In previous works, heuristic
methods have been proposed to combine the thermo-
dynamics with those phase field models above. In
this study, we propose a completely different method
based on the variational principle to derive the gov-

erning equations for the dissolution in the inhomoge-
neous temperature field.

The variational principle

The dynamics of a fluid can be divided into the kinetic
part and thermodynamics part. The kinetic part of
the dynamics for the fluid is characterized by the con-
servation laws for mass, energy, momentum, and an-
gular momentum. On the other hand, the thermody-
namics is described by the equation of the entropy in
the form as

@

@t
(⇢s) = ⇥�r · J , (1)

where ⇢ is total mass density, s is specific entropy,
J is entropy flux, and ⇥ > 0 is a dissipative func-
tion describing entropy production rate per time. The
equation (1) plays an important role in connecting the
kinematics and thermodynamics. In terms of the vari-
ational principle, we define the Lagrangian density as
the kinetic energy density minus the internal energy
density, and the action as the integral over space and
time. The realized dynamics minimizes the action
under some constraints[5, 6, 7, 8, 9, 10]. With the
aid of (1), this principle enables us to formulate the
dynamics of the fluid even if it has complicated con-
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straints. Noether’s theorem states that each of the
conservation laws is associated with each correspond-
ing symmetry. For example, the conservation laws for
energy, momentum, and angular momentum are re-
lated to the translation symmetries in time and space,
and rotational symmetry, respectively. Thus to sat-
isfy these conservation laws, (1) has to be consist with
these symmetries. If we don’t know the exact form
of the dissipative function ⇥ > 0, we can fix it by
considering the symmetries. On the other hand, the
entropy flux J is determined to erase surface terms
without fixing boundary conditions appearing in the
variational calculus. Our method is very simple. We
just give the Lagrangian by the kinetic energy minus
the internal energy. The exact form of (1) is obtained
by the method above.

The two-component fluid

We consider a two-component fluid composed of two
substances: solute and solvent. The conservation law
of the total mass ⇢ is given by

@

@t
⇢+r · (⇢v) = 0, (2)

where v is mass average velocity. We introduce the
set of three scalers A = (A

1

, A
2

, A
3

) denoting the
initial position of the fluid particle at (t,x). By the
definition, the material derivative Dt ⌘

@
@t + v ·r of

Ai is zero,
DtAi = 0. (3)

In the variational calculus, we use A to describe the
path lines of the fluid particles, and fix the value of
A at the boundary. Let  be the mass fraction of the
solute. The mass conservation law of the solute is

⇢Dt +r · j = 0, (4)

where j is the diffusion flux of the solute. The diffu-
sion flux j describes the relative motion of the solute
and the solvent. Let a be the amount of the solute
flowing through the unit interface orthogonal to the
direction of j, i.e.,

Dta� j = 0. (5)

We also fix the value of a at the boundary. The main
purpose is to obtain the equations for v and j from
the variational principle. We define the specific bulk

internal energy ✏ as the function of ⇢,  , and s. Here,
s is the specific entropy of the two-component fluid.
Thus we have

d✏ = �Pd⇢�1 + µd + Tds, (6)

in the thermodynamics. Pressure P and tempera-
ture T are defined as P ⌘ ⇢2 (@✏/@⇢)s, and T ⌘

(@✏/@s)⇢, , where the subscripts s, ⇢ and  indi-
cate variables fixed in the respective partial differ-
entiations. The coefficient µ ⌘ (@✏/@ )s, is an
appropriately defined chemical potential of mixture,
µ = µ

solute

/µ
solute

� µ
solvent

/µ
solvent

, where µ
solute

and µ
solvent

are the chemical potentials of the two
substances, and m

solute

and m
solvent

are the masses
of the two kinds of the particles as in §58 of Ref. [11].
We write E for the interface energy density given as
the function of ⇢, , and r , and assume that E is
isotropic, i.e.,

@E

@@i 
@j =

@E

@@j 
@i . (7)

The internal energy density is the sum of the bulk
energy density and the interface energy density,

⇢✏+ E. (8)

On the other hand, the total kinetic energy density
is the sum of the kinetic energy densities of the each
fluid, and it is rewritten into

1

2
⇢v2 +

1

2⇢

✓
1

 
+

1

1�  

◆
j

2. (9)

The Lagrangian density L is given by subtracting (8)
from (9),

L ⌘ ⇢
1

2
v

2 +
1

2⇢

✓
1

 
+

1

1�  

◆
j

2

� (⇢✏+ E) . (10)

Next, let us discuss the thermodynamics. Consid-
ering the translation symmetries in time and space,
which are respectively associated with the conserva-
tion laws of energy and momentum, the equation of
the entropy (1) is given in the form of

⇢Dts =
(�ij@i⌫i �r · Jq + ⇣ ·Dta)

T
�r · Js. (11)

Here � and ⇣ are coefficients, and Jq is heat flux.
Note that vj is the function of @Ai/@t and @jAi from
(3). We determine Js as

Js =
1

T

@E

@r 
Dt (12)
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to erase the surface term with respect to  appear-
ing in the variational calculus of the Lagrangian (10).
Here @E/@r takes large absolute value at the in-
terface, and Dt expresses the moving of the inter-
face. Thus (12) shows that entropy flux occurs with
accompanying the moving interface, which is related
to the heat of dissolution[12]. The coefficient � is a
symmetric tensor because of the rotational symme-
try corresponding to the conservation law of angular
momentum. We can rewrite (11) in the form of (1).
Then ⇥ and J are respectively given by

⇥ =
1

T
(�ijeij + ⇣ · j) + Jq ·r

✓
1

T

◆
, (13)

J = ⇢sv +
Jq

T
+ Js. (14)

Here eij ⌘ (@ivj + @jvi)/2 is the strain rate tensor.
We determine �, ⇣, and rT to make (13) positive
because of the second law of thermodynamics. In
the low degree approximation, (13) is given by the
quadratic form of eij , j, and rT . If we assume that
�ij depends on only eij and is isotropic, we have

�ij = 2aeij + (b� 2a/3)�ijekk, (15)

where a and b are the coefficients of shear and bulk
viscosities, respectively. If the both of a and b are
positive, �ijeij is also positive. Without loss of gen-
erality, we have

⌫ = ⇠j + ⌘rT, (16)
Jq = �⌘Tj � rT, (17)

where ⇠ is the coefficient of friction for the diffusion
flux j, and  is the coefficient of thermal conductiv-
ity. The coefficient ⌘ in (16) expresses the Soret effect
describing the flow of the solute induced by a temper-
ature gradient. On the other hand, the coefficient ⌘
in (17) shows the Dufour effect describing the energy
flux due to the diffusion flux j occurring. The both
of ⌘ in (16) and (17) expresses coupled effects of ir-
reversible processes. The coefficients ⇠, ⌘, and  are
determined to make (13) positive[3].

The action is given by the integral of (10) over the
considered time and space. By solving the stationary
condition of the action subject to (2), (3), (4), (5),
and (11), we obtain the equations of motion for the
mass average velocity v, and the diffusion flux j. The
former is

@

@t
(⇢vi) + @j (⇢vivj +⇧ij + �ij) = 0, (18)

where we use (7), and write ⇧ij for

⇧ij =

✓
P + ⇢

@E

@⇢
� E

◆
�ij +

@E

@@i 
@j . (19)

The latter is

Dt =

⇢
1

⇢

✓
1

 
+

1

1�  

◆
j

�

= �r

⇢
µ⇤ +

1

2⇢2

✓
1

 2

�

1

(1�  )2

◆
j

2

�
� ⇣, (20)

where µ⇤ is the generalized chemical potential defined
as

µ⇤
⌘ µ+

1

⇢

@E

@ 
�

T

⇢
@k

✓
1

T

@E

@@k 

◆
. (21)

If the diffusion flux j is static and small, we have

j = �

1

⇠
rµ⇤

�

⌘

⇠
rT, (22)

from (16) and (20). The equation (22) shows that
the diffusion flux j occurs in response to the gradi-
ents of the generalized chemical potential µ⇤ and the
temperature T . The third term in the right-hand side
in (21) shows that the interface energy prevents the
dissolution of the solute, when the temperature T is
low.

Summary and Discussion

We propose a new theoretical method based on the
variational principle for the two-component fluid in
inhomogeneous temperature field. In this proposed
method, we combine the kinematics and thermody-
namics by using (1) in the variational calculus. In
this way, we obtain all the equations describing the
whole dynamics of the two-component fluid. We clar-
ify that the interface energy plays the important role
in thermodynamics and dissolution as shown in (12)
and (21), respectively. Previous theories based on a
free energy[1, 2] assume a constant temperature and
no heat flux in these theories, and cannot derive the
entropy flux (12) and the generalized chemical poten-
tial (21). Our proposed method can be applied to var-
ious more complicated fluids, and yields the governing
equations consistent with the conservation laws and
thermodynamics. What are required in our theory
are the kinetic and the internal energy densities. The
exact form of (1) is determined to satisfy symmetries
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and the second law of thermodynamics, and to erase
surface terms without fixing boundary conditions ap-
pearing in the variational calculus. The equations of
motion are derived from the variational principle with
the aid of (1).
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